26 research outputs found

    Exploiting structural and topological information to improve prediction of RNA-protein binding sites

    Get PDF
    The breast and ovarian cancer susceptibility gene BRCA1 encodes a multifunctional tumor suppressor protein BRCA1, which is involved in regulating cellular processes such as cell cycle, transcription, DNA repair, DNA damage response and chromatin remodeling. BRCA1 protein, located primarily in cell nuclei, interacts with multiple proteins and various DNA targets. It has been demonstrated that BRCA1 protein binds to damaged DNA and plays a role in the transcriptional regulation of downstream target genes. As a key protein in the repair of DNA double-strand breaks, the BRCA1-DNA binding properties, however, have not been reported in detail

    Classifying RNA-Binding Proteins Based on Electrostatic Properties

    Get PDF
    Protein structure can provide new insight into the biological function of a protein and can enable the design of better experiments to learn its biological roles. Moreover, deciphering the interactions of a protein with other molecules can contribute to the understanding of the protein's function within cellular processes. In this study, we apply a machine learning approach for classifying RNA-binding proteins based on their three-dimensional structures. The method is based on characterizing unique properties of electrostatic patches on the protein surface. Using an ensemble of general protein features and specific properties extracted from the electrostatic patches, we have trained a support vector machine (SVM) to distinguish RNA-binding proteins from other positively charged proteins that do not bind nucleic acids. Specifically, the method was applied on proteins possessing the RNA recognition motif (RRM) and successfully classified RNA-binding proteins from RRM domains involved in protein–protein interactions. Overall the method achieves 88% accuracy in classifying RNA-binding proteins, yet it cannot distinguish RNA from DNA binding proteins. Nevertheless, by applying a multiclass SVM approach we were able to classify the RNA-binding proteins based on their RNA targets, specifically, whether they bind a ribosomal RNA (rRNA), a transfer RNA (tRNA), or messenger RNA (mRNA). Finally, we present here an innovative approach that does not rely on sequence or structural homology and could be applied to identify novel RNA-binding proteins with unique folds and/or binding motifs

    VASCo: computation and visualization of annotated protein surface contacts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Structural data from crystallographic analyses contain a vast amount of information on protein-protein contacts. Knowledge on protein-protein interactions is essential for understanding many processes in living cells. The methods to investigate these interactions range from genetics to biophysics, crystallography, bioinformatics and computer modeling. Also crystal contact information can be useful to understand biologically relevant protein oligomerisation as they rely in principle on the same physico-chemical interaction forces. Visualization of crystal and biological contact data including different surface properties can help to analyse protein-protein interactions.</p> <p>Results</p> <p>VASCo is a program package for the calculation of protein surface properties and the visualization of annotated surfaces. Special emphasis is laid on protein-protein interactions, which are calculated based on surface point distances. The same approach is used to compare surfaces of two aligned molecules. Molecular properties such as electrostatic potential or hydrophobicity are mapped onto these surface points. Molecular surfaces and the corresponding properties are calculated using well established programs integrated into the package, as well as using custom developed programs. The modular package can easily be extended to include new properties for annotation. The output of the program is most conveniently displayed in PyMOL using a custom-made plug-in.</p> <p>Conclusion</p> <p>VASCo supplements other available protein contact visualisation tools and provides additional information on biological interactions as well as on crystal contacts. The tool provides a unique feature to compare surfaces of two aligned molecules based on point distances and thereby facilitates the visualization and analysis of surface differences.</p

    MOS11: A New Component in the mRNA Export Pathway

    Get PDF
    Nucleocytoplasmic trafficking is emerging as an important aspect of plant immunity. The three related pathways affecting plant immunity include Nuclear Localization Signal (NLS)–mediated nuclear protein import, Nuclear Export Signal (NES)–dependent nuclear protein export, and mRNA export relying on MOS3, a nucleoporin belonging to the Nup107–160 complex. Here we report the characterization, identification, and detailed analysis of Arabidopsis modifier of snc1, 11 (mos11). Mutations in MOS11 can partially suppress the dwarfism and enhanced disease resistance phenotypes of snc1, which carries a gain-of-function mutation in a TIR-NB-LRR type Resistance gene. MOS11 encodes a conserved eukaryotic protein with homology to the human RNA binding protein CIP29. Further functional analysis shows that MOS11 localizes to the nucleus and that the mos11 mutants accumulate more poly(A) mRNAs in the nucleus, likely resulting from reduced mRNA export activity. Epistasis analysis between mos3-1 and mos11-1 revealed that MOS11 probably functions in the same mRNA export pathway as MOS3, in a partially overlapping fashion, before the mRNA molecules pass through the nuclear pores. Taken together, MOS11 is identified as a new protein contributing to the transfer of mature mRNA from the nucleus to the cytosol

    Cutoff Scanning Matrix (CSM): structural classification and function prediction by protein inter-residue distance patterns

    Get PDF
    BACKGROUND: The unforgiving pace of growth of available biological data has increased the demand for efficient and scalable paradigms, models and methodologies for automatic annotation. In this paper, we present a novel structure-based protein function prediction and structural classification method: Cutoff Scanning Matrix (CSM). CSM generates feature vectors that represent distance patterns between protein residues. These feature vectors are then used as evidence for classification. Singular value decomposition is used as a preprocessing step to reduce dimensionality and noise. The aspect of protein function considered in the present work is enzyme activity. A series of experiments was performed on datasets based on Enzyme Commission (EC) numbers and mechanistically different enzyme superfamilies as well as other datasets derived from SCOP release 1.75. RESULTS: CSM was able to achieve a precision of up to 99% after SVD preprocessing for a database derived from manually curated protein superfamilies and up to 95% for a dataset of the 950 most-populated EC numbers. Moreover, we conducted experiments to verify our ability to assign SCOP class, superfamily, family and fold to protein domains. An experiment using the whole set of domains found in last SCOP version yielded high levels of precision and recall (up to 95%). Finally, we compared our structural classification results with those in the literature to place this work into context. Our method was capable of significantly improving the recall of a previous study while preserving a compatible precision level. CONCLUSIONS: We showed that the patterns derived from CSMs could effectively be used to predict protein function and thus help with automatic function annotation. We also demonstrated that our method is effective in structural classification tasks. These facts reinforce the idea that the pattern of inter-residue distances is an important component of family structural signatures. Furthermore, singular value decomposition provided a consistent increase in precision and recall, which makes it an important preprocessing step when dealing with noisy data

    OnTheFly: a database of Drosophila melanogaster

    No full text
    corecore